Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log (5.2 x +1) 2 ; log (21-x+1) 4 and 1 are in Harmonical Progression then
Q. If
lo
g
(
5.
2
x
+
1
)
2
;
lo
g
(
2
1
−
x
+
1
)
4
and 1 are in Harmonical Progression then
176
109
Sequences and Series
Report Error
A
x
is a positive real
B
x
is a negative real
C
x
is rational which is not integral
D
x
is an integer
Solution:
a
,
b
,
c
are in H.P.
⇒
b
=
a
+
c
2
a
c
⇒
l
o
g
(
2
1
−
x
+
1
)
l
o
g
4
=
l
o
g
(
5
⋅
2
x
+
1
)
l
o
g
2
+
1
2
⋅
l
o
g
(
5
⋅
2
x
+
1
)
l
o
g
2
⋅
1
l
o
g
(
2
1
−
x
+
1
)
2
l
o
g
2
=
l
o
g
(
5
⋅
2
x
+
1
)
[
l
o
g
2
+
l
o
g
(
5
⋅
2
x
+
1
)
2
l
o
g
2
.
t
+
2
=
2/
t
+
1
⇒
10
t
2
+
2
t
=
2
+
t
(
2
x
=
t
)
10
t
2
+
t
−
2
=
0
10
t
2
+
5
t
−
4
t
−
2
=
0
5
t
(
2
t
−
1
)
−
2
(
2
t
+
1
)
=
0
⇒
t
=
2/5
,
−
1/2
x
lo
g
2
=
lo
g
2/5
⇒
2
x
=
2/5
x
lo
g
2
2
=
1
−
lo
g
2
5
x
=
1
−
lo
g
2
5.