Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log 3( log 2 x)+ log (1/3)( log (1/2) y)=1 and x y2=9, then
Q. If
lo
g
3
(
lo
g
2
x
)
+
lo
g
3
1
(
lo
g
2
1
y
)
=
1
and
x
y
2
=
9
, then
270
120
Continuity and Differentiability
Report Error
A
xy = 81
B
xy = 9
C
number of possible ordered pairs (x, y) is 2.
D
number of possible ordered pairs (x, y) is 1.
Solution:
lo
g
3
(
lo
g
2
x
)
−
lo
g
3
(
lo
g
2
y
1
)
=
1
lo
g
3
(
l
o
g
2
y
1
l
o
g
2
x
)
=
1
⇒
lo
g
y
1
x
=
3
⇒
x
y
3
=
1
Also,
x
y
2
=
9
∴
y
=
9
1
and
x
=
729
∴
x
y
=
81
(
x
,
y
)
=
(
729
,
4
1
)