Q.
If log32,log3(2x−5) and log3(2x−27)∈ A.P., then x equals
1372
182
Complex Numbers and Quadratic Equations
Report Error
Solution:
If a,b,c∈ A.P.
Then 2b=a+c ∴2log3(2x−5)=log3(2x+1−7) (∵log(ab)=loga+logb) ⇒(2x−5)2=2x+1−7 ⇒22x−10⋅2x+25=2x+1−7 ⇒22x−12⋅2x+32=0 ⇒(2x−8)(2x−4)=0 ⇒ either 2x=23 or 2x=22 ⇒ either x=3 or x=2
For x=2,2x−5<0 ∴ it is rejected ∴x=3