Q.
If log32,log3(2x−5) and log3(2x−27) are in A.P., then x is equal to
2844
209
AMUAMU 2011Sequences and Series
Report Error
Solution:
Since, it is in AP. ∴log3(2x−5)=2log32+log3(2x−27) ⇒2log3(2x−5)=log32(2x−27) ⇒(2x−5)2=2⋅2x−7
Put x2=t t2+25−10t=2t−7 ⇒t2−12t+32=0 ⇒(t−8)(t−4)=0 ⇒t=4,8 ⇒2x=4,2x=8 ⇒x=2,x=3 ⇒x=3 ∵x=2 does not exist in log3(2x−5)