Q.
If log2(9x−1+7)−log2(3x−1+1)=2 then x values are
2173
196
KCETKCET 2012Complex Numbers and Quadratic Equations
Report Error
Solution:
log2(9x−1+7)−log2(3x−1+1)=2 ⇒log2(3x−1+19x−1+7)=2log22 ⇒log2(3x−1+19x−1+7)=log222 ⇒(3x−1+19x−1+7)=4 ⇒(3x−1+1)(32)x−1+7=4 ⇒3x−1+1(32)x−1+7=4
Let 3x−1=y ∴y+1y2+7=4 ⇒y2+7=4y+4 ⇒y2−4y+3=0 ⇒y2−3y−y+3=0 ⇒y(y−3)−1(y−3)=0 ⇒(y−3)(y−1)=0 ⇒y=3,1
If y = 3, then 3x−1=3 ⇒x−1=1 ⇒x=2
If y = 1, then 3x−1=30 ⇒x−1=0 ⇒x=1 ∴x=1,2