Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log2 6+(1/2x) = log2(2(1/x) + 8), then the values of x are
Q. If
l
o
g
2
6
+
2
x
1
=
l
o
g
2
(
2
x
1
+
8
)
, then the values of x are
1778
209
WBJEE
WBJEE 2019
Report Error
A
4
1
,
3
1
B
4
1
,
2
1
C
−
4
1
,
2
1
D
3
1
,
−
2
1
Solution:
l
o
g
2
6
+
l
o
g
2
2
2
x
1
=
l
o
g
2
(
2
x
1
+
8
)
⇒
6
⋅
2
2
x
1
=
2
x
1
+
8
,
l
e
t
2
2
x
1
=
a
⇒
a
2
−
6
a
+
8
=
0
⇒
a
=
2
⇒
x
=
4
1
,
2
1