Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $log_{2}\,6+\frac{1}{2x} = log_{2}\left(2^{\frac{1}{x}} + 8\right)$, then the values of x are

WBJEEWBJEE 2019

Solution:

$log_{2}\,6+log_{2}\, 2^{\frac{1}{2x}} = log_{2}\left(2^{\frac{1}{x}}+8\right)\,\Rightarrow 6\cdot2^{\frac{1}{2x}} = 2^{\frac{1}{x}}+8,\,\, let\, 2^{\frac{1}{2x}} = a$
$\Rightarrow a^{2}-6a+8 = 0 \,\Rightarrow \,a = 2\,\Rightarrow \,x = \frac{1}{4}, \frac{1}{2}$