Q.
If (log)2(5(2x)+1),(log)4(21−x+1) and 1 are in arithmetic progression, then x is equal to
1576
237
NTA AbhyasNTA Abhyas 2020Sequences and Series
Report Error
Solution:
log2(5⋅2x+1),21log2(21−x+1),log22 are in A.P. ⇒2×21log2(21−x+1)=log2(5⋅2x+1)+log22 ⇒21−x+1=(5⋅2x+1)2
Let, 2x=y ⇒y2+1=(5y+1)2 ⇒2+y=10y2+2y ⇒10y2+y−2=0⇒y=52,2−1 ⇒2x=52 or 2−1 (not possible) ⇒2x=52 ⇒x=log2(52)=1−log25=1−log2log5