Q.
If log2(3sinx)−log2(cosx)−log2(1−tanx)−log2(1+tanx)=1, then tanx is equal to
106
91
Continuity and Differentiability
Report Error
Solution:
We have log2(3sinx)−log2(cosx)−log2(1−tanx)−log2(1+tanx)=1 ⇒log2(cosx(1−tanx)(1+tanx)3sinx)=1⇒log2(1−tan2x3tanx)=1 ⇒3tanx=2(1−tan2x)⇒2tan2x+3tanx−2=0 ⇒2tan2x+4tanx−tanx−2=0(2tanx−1)(tanx+2)=0 ⇒tanx=21 or tanx=−2( rejected, think!)