Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log 2(2 x2)+x log x(1+ log 2 x) log 2 x+(1/2)( log 4 x4)2+x3 log x( log 2 x)=27, then find the value of x.
Q. If
lo
g
2
(
2
x
2
)
+
x
l
o
g
x
(
1
+
l
o
g
2
x
)
lo
g
2
x
+
2
1
(
lo
g
4
x
4
)
2
+
x
3
l
o
g
x
(
l
o
g
2
x
)
=
27
, then find the value of x.
26
105
Continuity and Differentiability
Report Error
Answer:
4
Solution:
Let
lo
g
2
x
=
t
, So we get
(
1
+
2
t
)
+
(
1
+
t
)
t
+
2
t
2
+
t
3
=
27
⇒
t
3
+
3
t
2
+
3
t
+
1
=
27
⇒
(
1
+
t
)
3
=
27
⇒
1
+
t
=
3
⇒
t
=
2
⇒
lo
g
2
x
=
2
,
so
x
=
4