Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log 2 √2(32 √[5]4)=α+β where α is an integer and β ∈[0,1), then α is
Q. If
lo
g
2
2
(
32
5
4
)
=
α
+
β
where
α
is an integer and
β
∈
[
0
,
1
)
, then
α
is
338
109
Continuity and Differentiability
Report Error
A
3
B
4
C
5
D
6
Solution:
Given,
lo
g
2
2
3
(
2
5
⋅
2
5
2
)
=
α
+
β
=
lo
g
2
2
3
(
2
5
27
)
=
3/2
27/5
=
5
27
×
3
2
=
5
18
=
3.6
∴
α
=
3
,
β
=
0.6