Given, log10(x3+y3x3−y3)=2 ⇒x3+y3x3−y3=102=100 ⇒x3−y3=100(x3+y3) ⇒101y3=−99x3
On differentiating both sides w.r.t. x we get 101×3y2dxdy=−99⋅(3x2) ⇒101y2dxdy=−99x2
On multiplying by x both sides, we get ⇒101xy2dxdy=−99x3 ⇒dxdy=101xy2−99x3 ⇒dxdy=101xy2101y3[∵−99x3=101y3] ⇒dxdy=xy