Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If log102, log10 (2x - 1) and log10(2x + 3) be three consecutive terms of an A.P. then
Q. If
lo
g
10
2
,
lo
g
10
(
2
x
−
1
)
and
lo
g
10
(
2
x
+
3
)
be three consecutive terms of an A.P. then
2180
207
Sequences and Series
Report Error
A
x
=
0
11%
B
x
=
1
11%
C
x
=
lo
g
2
5
69%
D
none of these
9%
Solution:
By the given condition
2
l
o
g
10
(
2
x
−
1
)
=
l
o
g
10
2
+
l
o
g
10
(
2
x
+
3
)
⇒
(
2
x
−
1
)
2
=
2
(
2
x
+
3
)
⇒
2
2
x
−
2.
2
x
+
1
=
2
2
x
+
6
⇒
2
2
x
−
4.
2
x
−
5
=
0
⇒
(
2
x
−
5
)
(
2
x
+
1
)
=
0
2
x
=
5
or
2
x
=
−
1
But
2
x
=
−
1
is not possible.
∴
2
x
=
5
⇒
l
o
g
2
2
x
=
l
o
g
2
5
⇒
x
l
o
g
2
2
=
l
o
g
2
5
⇒
x
=
l
o
g
2
5
[
∵
l
o
g
2
2
=
1
]