The log functions are defined if 2(x+1)x2+6x+9>0 and x+1>0 ⇒2(x+1)(x+3)2>0 and x+1>0 ⇒x>−1
Now the inequality is log2−12(x+1)x2+6x+9<−log2(x+1) ⇒−log22(x+1)x2+6x+9<−log2(x+1) ⇒log22(x+1)x2+6x+9>log2(x+1) ⇒2(x+1)x2+6x+9>(x+1) ⇒2(x+1)−x2+2x+7>0 ⇒(x+1)(x2−2x−7)<0 ⇒x2−2x−7<0[∵x+1>0] ⇒−1−22<x<−1+22,
but x>−1⇒−1<x<−1+22