Q.
If log212(sinθ)+1=log21x and log2x≥2log2(sinθ), then
170
107
Continuity and Differentiability
Report Error
Solution:
log212(sinθ)+1=log21x .....(i) log21x≤2log21sinθ…… (ii) 1+log212(sinθ)≤2log21(sinθ) log212(sinθ)−2log21(sinθ)+1≤0 (log21sinθ−1)2≤0⇒log21sinθ=1 ⇒sinθ=21⇒θ=6π and log21x=2⇒x=41.
Now, verify the options.