Q.
If locus of feet of perpendiculars drawn from focus of parabola y2−6x+36=0 upon any tangent on it, is directrix for ellipse a2x2+9y2=1, then length of latus rectum of ellipse is
∵ Parabola is y2=6(x−6)
locus of feet of perpendicular from focus is tangent at vertex
i.e. x=6
For ellipse it is directrix ∴ea=6 ⇒a=6e ∵b2=a2(1−e2) ⇒9=36e2(1−e2) ⇒1=4e2(1−e2) ⇒4e4−4e2+1=0 ⇒(2e2−1)2=0 ⇒e2=21 ⇒e=21 ∴a=32 ∴ Latus rectum =a2b2=322⋅9 =32