Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ln ((e-1) ex y+x2)=x2+y2, then (d y/d x) at (1,0) is equal to
Q. If
ln
(
(
e
−
1
)
e
x
y
+
x
2
)
=
x
2
+
y
2
, then
d
x
d
y
at
(
1
,
0
)
is equal to
303
112
Differential Equations
Report Error
A
0
B
1
C
2
D
3
Solution:
Given,
(
e
−
1
)
e
x
y
+
x
2
=
e
x
2
+
y
2
Differentiate both sides with respect to
x
, we get
(
e
−
1
)
⋅
e
x
y
⋅
(
x
⋅
d
x
d
y
+
y
)
+
2
x
=
e
x
2
+
y
2
⋅
(
2
x
+
2
y
⋅
d
x
d
y
)
put
x
=
−
1
,
y
=
0
;
we get
(
e
−
1
)
⋅
(
d
x
d
y
)
+
2
=
e
(
2
+
0
)
⇒
d
x
d
y
∣
∣
(
1
,
0
)
=
2