Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If latus rectum of the ellipse x2 tan 2 α+y2 sec 2 α=1 is (1/2), where, 0<α<π, then eccentricity - prime e prime can be
Q. If latus rectum of the ellipse
x
2
tan
2
α
+
y
2
sec
2
α
=
1
is
2
1
, where,
0
<
α
<
π
, then eccentricity
−
′
e
′
can be
979
164
NTA Abhyas
NTA Abhyas 2022
Report Error
A
2
2
3
+
1
B
2
2
3
C
2
2
1
D
none of these
Solution:
x
2
tan
2
α
+
y
2
sec
2
α
=
1
⇒
c
o
t
2
α
x
2
+
c
o
s
2
α
y
2
=
1
∵
(
cos
)
2
α
=
(
cot
)
2
α
(
1
−
e
2
)
⇒
(
sin
)
2
α
=
(
1
−
e
2
)
∴
e
2
=
(
cos
)
2
α
(
α
=
9
0
∘
)
e
=
cos
α
∵
Latus rectum
=
1/2
=
2
b
2
/
a
⇒
a
=
4
b
2
,
⇒
cot
α
=
4
cos
2
α
⇒
s
i
n
α
1
=
4
cos
α
⇒
sin
2
α
=
2
1