Let A=∣∣13524615117∣∣ then ∣A−λI∣=0 is characteristic equation. i.e.,∣∣1−λ3524−λ615117−λ∣∣=0
Expanding along R1, we get ⇒(1−λ)[(4−λ)(7−λ)−66]+2[55−3(7−λ)]+15[18−5(4−λ)]=0 ⇒(1−λ)(28−11λ+λ2−66)+2(34+3λ)+15(−2+5λ)=0 ⇒(1−λ)(λ2−11λ−38)+68+6λ−30+75λ=0 ⇒λ2−11λ−38−λ2+38λ+38+81λ=0 ⇒−λ3+12λ2+108λ=0 ⇒−λ(λ2−12λ−108)=0 ⇒λ=0orλ2−12λ−108=0 ⇒λ=0or(λ−18)(λ+6)=0 ⇒λ=0,18,−6
Let λ1=−6,λ2=0,λ3=18 ∴(1+λ1)(1+λ2)(1+λ3)=(−5)(1)(19)=−95