Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If L= undersetx arrow (π/2) textLim ∫ limits(π/2)x ( cos 2 t √a2- cos 2 t/b x+a cot x-(b π)2) d t exists finitely, then
Q. If
L
=
x
→
2
π
Lim
2
π
∫
x
b
x
+
a
c
o
t
x
−
2
bπ
c
o
s
2
t
a
2
−
c
o
s
2
t
d
t
exists finitely, then
49
101
Integrals
Report Error
A
L
=
0
if
a
=
b
B
L
=
1
if
a
=
b
,
a
<
0
C
L
=
−
1
if
a
=
b
D
L
=
−
1
if
a
=
b
,
a
>
0
Solution:
L
=
x
→
2
π
Lim
2
π
∫
x
b
x
+
a
c
o
t
x
−
2
bπ
c
o
s
2
t
a
2
−
c
o
s
2
t
d
t
(
0
0
form
)
=
x
→
2
π
Lim
b
−
a
cosec
2
x
c
o
s
2
x
a
2
−
c
o
s
2
x
=
0
if
a
=
b
when
a
=
b
L
=
x
→
2
π
Lim
a
(
1
−
cosec
2
x
)
c
o
s
2
x
a
2
−
c
o
s
2
x
=
x
→
2
π
Lim
−
a
c
o
t
2
x
c
o
s
2
x
a
2
−
c
o
s
2
x
=
x
→
2
π
Lim
−
a
s
i
n
2
x
a
2
−
c
o
s
2
x
=
−
a
∣
a
∣
=
{
−
1
;
1
;
a
>
0
a
<
0