We have L=n→∞Limn41i=1∏2n(n2+i2)n1 ⇒lnL=n→∞Limn1i=1∑2nln(n2+i2)−4lnn ⇒lnL=n→∞Limn1i=1∑2nln(n2(1+n2i2))−4lnn ⇒lnL=n→∞Limn2lnni=1∑2n1+n1i=1∑2nln(1+n2i2)−4lnn ⇒lnL=n→∞Limn2lnn(2n)+n1i=1∑2nln(1+n2i2)−4lnn ⇒lnL=0∫2ln(1+x2)dx=xln(1+x2)∣∣02−0∫21+x22x2dx So, lnL=2ln5−2[2−tan−12]=2tan−12−4+2ln5