lsinθ−mcosθ=l2+m2
Divide both sides by l2+m2 (l2+m21)sinθ+(l2+m21−m)cosθ=1 ⇒sin2θ+cos2θ=1 ⇒sinθ⋅sinθ+cosθ⋅cosθ=1 ⇒{∵sinθ=l2+n2l and cosθ=l2+m2−m} ⇒a2cos2θ+b2sin2θ=l2+m21
Putting the value of sinθ and cosθ, we get (l2+m2)a2m2+(l2+m2)b2l2=l2+a21
Cancel the same terms on both sides. l2+m21(a2m2+b2l2)=l2+a21 ∴a2m2+b2l2=1