Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If l,m and n are real numbers such that l2+m2 +n2=0, then | beginmatrix 1+l2 lm ln lm 1+m2 mn ln mn 1+n2 endmatrix | is equal to
Q. If
l
,
m
and
n
are real numbers such that
l
2
+
m
2
+
n
2
=
0
,
then
∣
∣
1
+
l
2
l
m
l
n
l
m
1
+
m
2
mn
l
n
mn
1
+
n
2
∣
∣
is equal to
2839
253
KEAM
KEAM 2007
Determinants
Report Error
A
0
100%
B
1
0%
C
l
+
m
+
n
+
2
0%
D
2
(
Z
+
m
+
n
)
+
3
0%
E
l
mn
−
1
0%
Solution:
∣
∣
1
+
l
2
l
m
ln
l
m
1
+
m
2
mn
ln
mn
1
+
n
2
∣
∣
=
(
1
+
l
2
)
∣
∣
1
+
m
2
mn
mn
1
+
n
2
∣
∣
−
l
m
∣
∣
l
m
ln
mn
1
+
n
2
∣
∣
=
l
n
∣
∣
l
m
l
n
1
+
m
2
mn
∣
∣
=
(
1
+
l
2
)
(
1
+
m
2
+
n
2
+
m
2
n
2
−
m
2
n
2
)
−
l
m
(
l
m
−
l
m
n
2
−
l
m
n
2
)
+
ln
(
l
m
2
n
−
ln
−
l
m
2
n
)
=
(
1
+
l
2
)
(
1
+
m
2
+
n
2
)
−
l
2
m
2
−
l
2
n
2
=
1
+
m
2
+
n
2
+
l
2
+
l
2
m
2
+
l
2
n
2
−
l
2
m
2
−
l
2
n
2
=
1
+
m
2
+
n
2
+
l
2
=
1
(
∵
l
2
+
m
2
+
n
2
=
0
)