Q. If $ l,m $ and $ n $ are real numbers such that $ {{l}^{2}}+{{m}^{2}} $ $ +{{n}^{2}}=0, $ then $ \left| \begin{matrix} 1+{{l}^{2}} & lm & ln \\ lm & 1+{{m}^{2}} & mn \\ ln & mn & 1+{{n}^{2}} \\ \end{matrix} \right| $ is equal to
Solution:
Solution: