Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If L= displaystyle lim x arrow (π/4) ((1- tan x)(1- sin 2 x)/(1+ tan x)(π-4 x)3), then the value of 40 L is equal to
Q. If
L
=
x
→
4
π
lim
(
1
+
tan
x
)
(
π
−
4
x
)
3
(
1
−
tan
x
)
(
1
−
sin
2
x
)
, then the value of
40
L
is equal to
129
153
Report Error
Answer:
1.25
Solution:
L
=
x
→
4
π
lim
4
(
4
π
−
x
)
(
π
−
4
x
)
2
tan
(
4
π
−
x
)
(
1
−
sin
2
x
)
=
x
→
4
π
lim
4
1
(
π
−
4
x
)
2
(
1
−
sin
2
x
)
=
x
→
4
π
lim
4
1
2
(
π
−
4
x
)
(
−
4
)
(
−
cos
2
x
)
⋅
2
(applying L-Hospital rule)
=
x
→
4
π
lim
16
1
(
π
−
4
x
)
cos
(
2
x
)
=
x
→
4
π
lim
16
1
−
4
(
−
sin
2
x
)
×
2
(again applying L-Hospital rule)
=
16
1
(
−
4
−
1
)
×
2
⇒
L
=
32
1