Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If L= displaystyle lim x arrow 2 (√[3]60+x2-4/ sin (x-2)), then the value of 3 L is
Q. If
L
=
x
→
2
lim
sin
(
x
−
2
)
3
60
+
x
2
−
4
, then the value of
3
L
is ___
15
156
Limits and Derivatives
Report Error
Answer:
0.25
Solution:
We have,
x
→
2
lim
sin
(
x
−
2
)
3
60
+
x
2
−
3
64
=
x
→
2
lim
(
x
−
2
)
(
x
−
2
)
s
i
n
(
x
−
2
)
[
(
60
+
x
2
)
3
2
+
(
60
+
x
2
)
3
1
6
4
3
1
+
6
4
3
2
]
[
(
60
+
x
2
)
3
1
−
6
4
3
1
]
[
(
60
+
x
2
)
3
2
+
(
60
+
x
2
)
3
1
6
4
3
1
+
6
4
3
2
]
=
x
→
2
lim
(
x
−
2
)
[
16
+
4
×
4
+
16
]
60
+
x
2
−
64
=
x
→
2
lim
48
(
x
−
2
)
(
x
−
2
)
(
x
+
2
)
=
x
→
2
lim
48
x
+
2
=
48
4
=
12
1