Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If l12+m12+n12=1 etc., and l1 l2+m1 m2+n1 n2 =0 etc., and Δ=| l1 m1 n1 l2 m2 n2 l3 m3 n3 | then
Q. If
l
1
2
+
m
1
2
+
n
1
2
=
1
etc., and
l
1
l
2
+
m
1
m
2
+
n
1
n
2
=
0
etc., and
Δ
=
∣
∣
l
1
l
2
l
3
m
1
m
2
m
3
n
1
n
2
n
3
∣
∣
then
212
163
Determinants
Report Error
A
∣Δ∣
=
3
B
∣Δ∣
=
2
C
∣Δ∣
=
1
D
Δ
=
0
Solution:
We have
Δ
2
=
∣
∣
l
1
l
2
l
3
m
1
m
2
m
3
n
1
n
2
n
3
∣
∣
∣
∣
l
1
l
2
l
3
m
1
m
2
m
3
n
1
n
2
n
3
∣
∣
=
∣
∣
a
1
b
12
b
13
b
21
a
2
b
23
b
31
b
32
a
3
∣
∣
where
a
k
=
l
k
2
+
m
k
2
+
n
k
2
=
1
for
k
=
1
,
2
,
3
and
b
ij
=
l
i
l
j
+
m
i
m
j
+
n
i
n
j
=
0∀
i
=
j
Thus,
Δ
2
=
∣
∣
1
0
0
0
1
0
0
0
1
∣
∣
=
1
⇒
∣Δ∣
=
1