Q.
If k=23n, where n is an even positive integer, then r=1∑k(−3)r−1⋅3nC2r−1=
1515
223
Complex Numbers and Quadratic Equations
Report Error
Solution:
We know that, (1+x)3n=1+3nC1x+3nC2x2+…+3nC3nx3n(1) (1−x)3n=1−3nC1x+3nC2x2+…+(−1)3n3nC3nx3n(2)
Subtracting (2) from (1) gives (1+x)3n−(1−x)3n=2[3nC1x+3nC3x3+3nC5x5+…] =2x[3nC1+3nC3x2+3nC5x4+…]
Putting x=i3, we get (1+i3)3n−(1−i3)3n =2i3[3nC1−3×3nC3+32×3nC5…]
Therefore, 3nC1−33nC3+32×3nC5… =2i31[(1+i3)3n−(1−i3)3n] =2i31×23n[(21+2i3)−(21−2i3)3n] =i323n−1[(cosnπ+isinnπ)−(cosnπ−isinnπ)] =i323n−12isinnπ=0 as n is an integer.