Given, f(x)=y=(x)2+2x+3(x)2+ax+b
Where, D≥0 ⇒(2y−a)2−4(y−1)(3y−b)≥0 ⇒−8(y)2+(−4a+4b+12)y+(a)2−4b≥0 ⇒(y)2+(84a−4b−12)y+84b−(a)2≤0....(i)
We know that, −5≤y≤4 ⇒(y+5)(y−4)≤0 ⇒(y)2+y−20≤0....(ii)
From (i) and (ii) , we can say that, 84a−4b−12=1 ⇒4a−4b=20 ⇒a−b=5
and 84b−a2=−20 ⇒4b−(b+5)2=160 ⇒b2+6b−135=0 ⇒(b−9)(b+15)=0
If b=9 so a=14
Now value of a2+b2=92+142=81+196=227