Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ((x+x2+x3)/√15+12 x+10 x2) d x=(f(x)/λ) √15+12 x+10 x2+C where C is the constant of integration and f (0)=0 then ( f prime prime(1)+λ) equals
Q. If
∫
15
+
12
x
+
10
x
2
(
x
+
x
2
+
x
3
)
d
x
=
λ
f
(
x
)
15
+
12
x
+
10
x
2
+
C
where
C
is the constant of integration and
f
(
0
)
=
0
then
(
f
′′
(
1
)
+
λ
)
equals
363
137
Integrals
Report Error
A
32
B
34
C
62
D
64
Solution:
I
=
∫
15
+
12
x
+
10
x
2
(
x
+
x
2
+
x
3
)
d
x
Multiply numerator and denominator by
x
2
∫
10
x
6
+
12
x
5
+
15
x
4
x
5
+
x
4
+
x
3
d
x
Put
10
x
6
+
12
x
5
+
15
x
4
=
t
2
⇒
60
(
x
5
+
x
4
+
x
3
)
d
x
=
2
t
d
t
30
1
∫
t
t
d
t
=
30
t
+
C
=
30
x
2
10
x
2
+
12
x
+
15
+
C
∴
f
(
x
)
=
x
2
and
λ
=
30
⇒
f
′′
(
1
)
+
l
=
32