∫x3(lnx)2dx=32x4(a(lnx)2+b(lnx)+c)+d
Differentiating both sides, x3(lnx)2=321x4(xa⋅2lnx+xb)+324x3(a(lnx)2+b(lnx)+c) x3(lnx)2=16ax3lnx+32bx3+8ax3(lnx)2+8bx3(lnx)+8cx3 x3(ln)2=(16a+8b)x3lnx+8ax3(lnx)2+(32b+8c)x3
Comparing both sides, 16a+8b=0;8a=1 and 32b+81=0 a+2b=0⇒a=8b+4c=0⇒c=1<br/>b=−4 ∴a+b+c=8−4+1=5