Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫(x3 dx/√1+x2)= a(1+x2) 3/2 +b √1+x2+ C, then
Q. If
∫
1
+
x
2
x
3
d
x
=
a
(
1
+
x
2
)
3
/
2
+
b
1
+
x
2
+
C
, then
1675
186
Integrals
Report Error
A
a
=
3
1
,
b
=
1
29%
B
a
=
3
−
1
,
b
=
1
27%
C
a
=
3
−
1
,
b
=
−
1
20%
D
a
=
3
1
,
b
=
−
1
24%
Solution:
We have,
I
=
∫
1
+
x
2
x
3
d
x
Put
x
2
=
t
⇒
2
x
d
x
=
d
t
⇒
I
=
2
1
∫
1
+
t
t
d
t
=
2
1
∫
1
+
t
t
+
1
−
1
d
t
=
2
1
∫
(
1
+
t
−
(
1
+
t
)
−
1
/
2
)
d
t
=
2
1
×
3
2
(
1
+
t
)
3
/
2
−
2
1
×
2
(
1
+
t
)
1
/
2
+
C
=
3
1
(
1
+
x
2
)
3
/
2
−
(
1
+
x
2
)
1
/
2
+
C
Hence,
a
=
3
1
,
b
=
−
1