Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ((x2+1) ex/(x+1)2) d x=f(x) ex+C, where C is a constant, then (d3 f/d x3) at x=1 is equal to
Q. If
∫
(
x
+
1
)
2
(
x
2
+
1
)
e
x
d
x
=
f
(
x
)
e
x
+
C
, where
C
is a constant, then
d
x
3
d
3
f
at
x
=
1
is equal to
2245
141
Report Error
A
−
4
3
B
4
3
C
−
2
3
D
2
3
Solution:
I
=
∫
(
x
+
1
)
2
e
x
(
x
2
+
1
)
d
x
=
f
(
x
)
e
x
+
c
=
∫
(
x
+
1
)
2
e
x
(
x
2
−
1
+
1
+
1
)
d
x
=
∫
e
x
[
x
+
1
x
−
1
+
(
x
+
1
)
2
2
]
d
x
=
e
x
(
x
+
1
x
−
1
)
+
c
∴
f
(
x
)
=
x
+
1
x
−
1
f
(
x
)
=
1
−
x
+
1
2
f
′
(
x
)
=
2
(
x
+
1
1
)
2
f
′′
(
x
)
=
−
4
(
x
+
1
1
)
3
f
′′′
(
x
)
=
(
x
+
1
)
4
12
for
x
=
1
f
′′′
(
1
)
=
2
4
12
=
16
12
=
4
3