Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limitsx0 f(t) dt = x2 + ∫ limits1x t2 f(t) dt, then f'(1/2) is
Q. If
0
∫
x
f
(
t
)
d
t
=
x
2
+
x
∫
1
t
2
f
(
t
)
d
t
, then f'(1/2) is
8390
228
JEE Main
JEE Main 2019
Integrals
Report Error
A
25
6
16%
B
25
24
46%
C
25
18
20%
D
5
4
18%
Solution:
∫
0
x
f
(
t
)
d
t
=
x
2
+
∫
x
1
t
2
f
(
t
)
d
t
,
f
′
(
2
1
)
=
?
Differentiate w.r.t. 'x'
f
(
x
)
=
2
x
+
0
−
x
2
f
(
x
)
f
(
x
)
=
1
+
x
2
2
x
⇒
f
′
(
x
)
=
(
1
+
x
2
)
2
(
1
+
x
2
)
2
−
2
x
(
2
x
)
f
′
(
x
)
=
(
1
+
x
2
)
2
2
x
2
−
4
x
2
+
2
f
′
(
2
1
)
=
(
1
+
4
1
)
2
2
−
2
(
4
1
)
=
16
25
(
2
3
)
=
50
48
=
25
24