Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ u (d2 v/d x2) d x=u (d v/d x)-v (d u/d x)+w then w is equal to
Q. If
∫
u
d
x
2
d
2
v
d
x
=
u
d
x
d
v
−
v
d
x
d
u
+
w
then
w
is equal to
108
124
Integrals
Report Error
A
∫
v
d
x
2
d
2
u
d
x
B
∫
u
d
x
d
2
v
d
x
C
∫
v
(
d
x
d
u
)
2
d
x
D
∫
u
(
d
x
d
v
)
2
d
x
Solution:
Differentiate the given integral with respect to
x
u
d
x
2
d
2
v
=
u
d
x
2
d
2
v
+
d
x
d
u
⋅
d
x
d
v
−
v
d
x
2
d
2
u
−
d
x
d
v
⋅
d
x
d
u
+
d
x
d
w
⇒
d
x
d
w
=
v
d
x
2
d
2
u
∴
d
w
=
v
d
x
2
d
2
u
d
x
∴
w
=
∫
v
d
2
d
2
u
d
x