Let I=∫sin(x−α)sinxdx Put x−α=r⇒dx=dt ∴I=∫sintsin(t+α)dt ⇒I=∫cosαdt+∫sinαsintcostdt ⇒I=cosα∫1dt+sinα∫sintcostdt ⇒I=cosα(x−α)+sinαlogsin(x−α)+C1 ⇒ =xcosα+sinαlogsin(x−α)+C But ∫sin(x−α)sinxdx =Ax+Blogsin(x−α)+C ∴xcosα+sinαlogsin(x−a)+C =Ax+Blogsin(x−α)+C At α=2π,A=0 and B=1 ∴A−B=−1