Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( sin x/ sin 3 x+ cos 3 x) d x= α log e |1+ tan x |+β log e |1- tan x + tan 2 x |+γ tan -1((2 tan x -1/√3))+ C when C is constant of integration, then the value of 18(α+β+γ2) is
Q. If
∫
s
i
n
3
x
+
c
o
s
3
x
s
i
n
x
d
x
=
α
lo
g
e
∣1
+
tan
x
∣
+
β
lo
g
e
∣
∣
1
−
tan
x
+
tan
2
x
∣
∣
+
γ
tan
−
1
(
3
2
t
a
n
x
−
1
)
+
C
when
C
is constant of integration, then the value of
18
(
α
+
β
+
γ
2
)
is ____
2046
225
JEE Main
JEE Main 2021
Integrals
Report Error
Answer:
3
Solution:
=
∫
1
+
t
a
n
3
x
c
o
s
3
x
s
i
n
x
d
x
=
∫
(
t
a
n
x
+
1
)
(
1
+
t
a
n
2
x
−
t
a
n
x
)
t
a
n
x
⋅
s
e
c
2
x
d
x
Let
tan
x
=
t
⇒
sec
2
x
⋅
d
x
=
d
t
=
∫
(
t
+
1
)
(
t
2
−
t
+
1
)
t
d
t
=
∫
(
t
+
1
A
+
t
2
−
t
+
1
B
(
2
t
−
1
)
+
t
2
−
t
+
1
C
)
d
x
⇒
A
(
t
2
−
t
+
1
)
+
B
(
2
t
−
1
)
(
t
2
−
t
+
1
)
+
C
(
t
+
1
)
=
t
⇒
t
2
(
A
+
2
B
)
+
t
(
−
A
+
B
+
C
)
+
A
−
B
+
C
=
1
∴
A
+
2
B
=
0...
(1)
−
A
+
B
+
C
=
1...
(2)
A
−
B
+
C
=
0....
(3)
⇒
C
=
2
1
⇒
A
−
B
=
−
2
1
....
(4)
A
+
2
B
=
0
A
−
B
=
−
2
1
⇒
3
B
=
2
1
⇒
B
=
6
1
A
=
−
3
1
I
=
−
3
1
∫
1
+
t
d
t
+
6
1
∫
t
2
−
t
+
1
2
t
−
1
d
t
+
2
1
∫
t
2
−
t
+
1
d
t
=
−
3
1
ℓ
n
∣
(
1
+
tan
x
)
∣
+
6
1
ln
∣
∣
tan
2
x
−
tan
x
+
1
∣
∣
+
2
1
⋅
3
2
tan
−
1
(
2
3
(
t
a
n
x
−
2
1
)
)
=
−
3
1
ln
∣
(
1
+
tan
x
)
∣
+
6
1
ln
∣
∣
tan
2
x
−
tan
x
+
1
∣
∣
+
3
1
tan
−
1
(
3
2
t
a
n
x
−
1
)
+
C
α
=
−
3
1
,
β
=
6
1
,
γ
=
3
1
18
(
α
+
β
+
γ
2
)
=
18
(
−
3
1
+
6
1
+
3
1
)
=
3