Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( sec 2 x/ tan 2017 x+ tan x) d x=g(x)+c, where g((π/4))=(- ln 2/2016), then undersetx arrow (π-/2) textLim g(x) is equal to (where c is constant of integration)
Q. If
∫
t
a
n
2017
x
+
t
a
n
x
s
e
c
2
x
d
x
=
g
(
x
)
+
c
, where
g
(
4
π
)
=
2016
−
l
n
2
, then
x
→
2
π
−
Lim
g
(
x
)
is equal to (where
c
is constant of integration)
934
116
Integrals
Report Error
A
0
B
1
C
2016
−
1
D
−
ln
2
Solution:
Given integral,
I
=
∫
t
a
n
2017
x
+
t
a
n
x
s
e
c
2
x
d
x
Let
tan
x
=
t
⇒
sec
2
x
d
x
=
d
t
I
=
∫
t
2017
+
t
1
d
t
=
∫
1
+
t
2016
1
t
2017
1
d
t
Let
1
+
t
2016
1
=
z
⇒
t
2017
−
2016
d
t
=
d
z
∴
I
=
2016
−
1
ln
(
1
+
t
2016
1
)
+
c
∴
I
=
2016
−
1
ln
(
1
+
t
a
n
2016
x
1
)
+
c
∴
x
→
2
−
−
Lim
g
(
x
)
=
0