Let I=∫sec2xcosec4xdx =∫sin4xcos2x1dx=∫sin4xcos2xsin2x+cos2xdx (∵1=sin2x+cos2x) =∫sin2xcos2xdx+∫sin4xdx =∫sin2xcos2x(sin2x+cos2x)dx+∫cosec4xdx (∵1=sin2x+cos2x) =∫(sec2x+cosec2x)dx +∫cosec2x(1+cot2x)dx =tanx−cotx+∫cosec2xdx +∫cosec2xcot2xdx =tanx−cotx−cotx−3cot3x+C =−31cot3x+tanx−2cotx+C
But it given that, I=−31cot3x+ktanx−2cotx+C ∴k=1