Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( operatornamecosec2 x/( textcosec x+ cot x)9 / 2) d x =( textcosec x- cot x)7 / 2((1/α)+(( textcosec x- cot x)2/11))+C (where C is constant of integration and α ∈ N ), then α is
Q. If
∫
(
cosec
x
+
c
o
t
x
)
9/2
cosec
2
x
d
x
=
(
cosec
x
−
cot
x
)
7/2
(
α
1
+
11
(
cosec
x
−
c
o
t
x
)
2
)
+
C
(where
C
is constant of integration and
α
∈
N
), then
α
is
38
158
Integrals
Report Error
Answer:
7
Solution:
I
=
∫
(
cosec
x
+
c
o
t
x
)
9/2
cosec
2
x
d
x
Put
cosec
x
+
cot
x
=
z
cosec
x
−
cot
x
=
z
1
−
2
cosec
2
x
d
x
=
(
1
+
z
2
1
)
d
z
∴
I
=
−
2
1
∫
z
9/2
1
+
z
2
1
d
z
=
−
2
1
[
∫
z
−
9/2
d
z
+
∫
z
2
−
13
d
z
]
=
−
2
1
[
(
−
7
)
z
−
7/2
2
+
(
−
11
)
z
−
11/2
2
]
+
C
=
z
2
−
7
[
7
1
+
11
z
−
3
]
+
C
=
(
cosec
x
−
cot
x
)
2
7
(
7
1
+
11
(
cosec
x
−
c
o
t
x
)
2
)
+
C