Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( operatornamecosec2 x-2010/ cos 2010 x) d x=-(f(x)/(g(x))2010)+C; where f((π/4))=1 ; then the number of solutions of the equation (f(x)/g(x))= x in [0,2 π] is/are: (where . represents fractional part function)
Q. If
∫
c
o
s
2010
x
cosec
2
x
−
2010
d
x
=
−
(
g
(
x
)
)
2010
f
(
x
)
+
C
; where
f
(
4
π
)
=
1
;
then the number of solutions of the equation
g
(
x
)
f
(
x
)
=
{
x
}
in
[
0
,
2
π
]
is/are : (where
{
.
}
represents fractional part function)
1643
197
Integrals
Report Error
A
0
B
1
C
2
D
3
Solution:
∫
sec
2010
x
cosec
2
x
d
x
−
∫
2010
sec
2010
x
d
x
=
∫
sec
2010
x
(
−
cot
x
)
−
∫
2010
sec
2010
x
⋅
tan
x
⋅
(
−
cot
x
)
−
∫
2010
sec
2010
x
d
x
=
−
(
c
o
s
x
)
2010
c
o
t
x
+
2010
∫
sec
2010
x
d
x
−
2010
∫
sec
2010
x
d
x
+
C
=
(
c
o
s
x
)
2010
−
c
o
t
x
+
C
∴
g
(
x
)
f
(
x
)
=
s
i
n
x
1
=
{
x
}
No solution.