We have, log2∫xey−1dy=6π
Put ey=sec2θ,i.e.,y=log(sec2θ) ⇒dy=sec2θ12secθsecθtanθdθ=2tanθdθ
If y=log2, then log2=log(sec2θ) ⇒secθ=2 ⇒θ=4π
If y=x, then x=logsec2θ⇒ex=sec2θ ⇒ex=secθ⇒θ=sec−1ex ∴log2∫xey−1dy=4π∫sec−1exsec2θ−12tanθdθ 6π=4π∫sec−1ex2tanθ2tanθdθ=2[θ]π/4sec−1(ex/2) ⇒6π=2[sec−1(ex2)−4π] ⇒sec−1(ex2)−4π ⇒ex/2=sec3π=2
Taking logarithms on both sides, we get 2x=log2⇒x=2log2=log22=log4 x=log4