Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if ∫ limitsab (xn/xn + (16 - x)n) dx = 6, then
Q. if
a
∫
b
x
n
+
(
16
−
x
)
n
x
n
d
x
=
6
, then
3606
181
Integrals
Report Error
A
a
=
4
,
b
=
12
,
n
∈
R
18%
B
a
=
2
,
b
=
14
,
n
∈
R
52%
C
a
=
−
4
,
b
=
20
,
n
∈
R
17%
D
a
=
2
,
b
=
8
,
n
∈
R
12%
Solution:
a
∫
b
x
n
+
(
16
−
x
)
n
x
n
d
x
=
6
....
(
i
)
Let
a
+
b
=
16
, then by property
a
∫
b
(
16
−
x
)
n
+
x
n
(
16
−
x
)
n
d
x
=
6
....
(
ii
)
Adding
(
i
)
and
(
ii
)
, we get
a
∫
b
1
⋅
d
x
=
12
⇒
b
−
a
=
12
Solving
a
+
b
=
16
and
b
−
a
=
12
,
we get
a
=
2
,
b
=
14
and
n
∈
R