Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits0x f(x) sin t d t is constant for every x ∈(0,2 π) and f(π)=2, then the value of f((π/2)) is equal to
Q. If
0
∫
x
f
(
x
)
sin
t
d
t
is constant for every
x
∈
(
0
,
2
π
)
and
f
(
π
)
=
2
, then the value of
f
(
2
π
)
is equal to
56
79
Integrals
Report Error
A
4
B
2
C
2
1
D
2
π
Solution:
f
(
x
)
×
0
∫
x
sin
t
d
t
=
C
(given)
f
(
x
)
(
1
−
cos
x
)
=
C
put
x
=
π
2
(
2
)
=
C
∴
C
=
4
⇒
f
(
x
)
=
1
−
c
o
s
x
4
⇒
f
(
2
π
)
=
4