Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits0√3 (15 x3/√1+x2+√(1+x2)3) dx =α √2+β √3, where α, β are integers, then α+β is equal to
Q. If
0
∫
3
1
+
x
2
+
(
1
+
x
2
)
3
15
x
3
d
x
=
α
2
+
β
3
, where
α
,
β
are integers, then
α
+
β
is equal to
677
137
JEE Main
JEE Main 2022
Integrals
Report Error
Answer:
10
Solution:
Put
1
+
x
2
=
t
2
2
d
x
=
2
t
d
t
X
d
x
=
t
d
t
∴
1
∫
2
t
2
+
t
3
15
(
t
2
−
1
)
t
d
t
15
1
∫
2
t
1
+
t
t
(
t
2
−
1
)
d
t
Put
1
+
t
=
u
2
d
t
=
2
u
d
u
15
2
∫
3
u
(
u
2
−
1
)
2
−
1
×
2
u
d
u
30
2
∫
3
(
u
4
−
2
u
2
)
d
u
30
(
5
u
5
−
3
2
u
3
)
2
3
30
[
5
1
(
3
5
−
2
5
)
−
3
2
(
3
3
−
2
3
)
]
30
[
5
1
(
9
3
−
4
2
)
−
3
2
(
3
3
−
2
2
)
]
30
[
−
5
1
×
3
+
15
8
2
]
−
6
3
+
16
2
=
α
2
+
β
3
α
=
16
,
β
=
−
6
∴
α
+
β
=
10