Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits011 (11x/11[x]) d x=(k/ log 11), (where [ ] denotes greatest integer function) then value of k is
Q. If
0
∫
11
1
1
[
x
]
1
1
x
d
x
=
l
o
g
11
k
, (where [ ] denotes greatest integer function) then value of
k
is
737
158
Integrals
Report Error
A
11
B
101
C
110
D
111
Solution:
I
=
0
∫
11
1
1
(
x
)
d
x
=
0
∫
11
×
1
1
1
(
x
)
d
x
=
11
0
∫
1
1
1
{
x
}
d
x
{
∵
{
x
}
is periodic with period 1
}
=
11
0
∫
1
1
1
x
d
x
=
11
[
ℓ
n
11
1
1
x
]
0
1
=
11
[
ℓ
n
11
11
−
ℓ
n
11
1
]
=
ℓ
n
11
110
=
ℓ
n
11
k
⇒
k
=
110