Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits0100 f(x) d x=a, then displaystyle∑r=1100(∫ limits01 f(r-1+x) d x)=
Q. If
0
∫
100
f
(
x
)
d
x
=
a
, then
r
=
1
∑
100
⎝
⎛
0
∫
1
f
(
r
−
1
+
x
)
d
x
⎠
⎞
=
250
172
Integrals
Report Error
A
100
a
B
a
C
0
D
10
a
Solution:
r
=
1
∑
100
⎝
⎛
0
∫
1
f
(
r
−
1
+
x
)
d
x
⎠
⎞
=
0
∫
1
f
(
x
)
d
x
+
0
∫
1
f
(
1
+
x
)
d
x
+
0
∫
1
f
(
2
+
x
)
d
x
+
……
+
0
∫
1
f
(
99
+
x
)
d
x
=
0
∫
1
f
(
x
)
d
x
+
1
∫
2
f
(
x
)
d
x
+
…
..
+
99
∫
100
f
(
x
)
d
x
( using shifting property )
=
0
∫
100
f
(
x
)
d
x
=
a