Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int\limits_0^{100} f(x) d x=a$, then $\displaystyle\sum_{r=1}^{100}\left(\int\limits_0^1 f(r-1+x) d x\right)=$

Integrals

Solution:

$\displaystyle\sum_{r=1}^{100}\left(\int\limits_0^1 f(r-1+x) d x\right) $
$ = \int\limits_0^1 f(x) d x+\int\limits_0^1 f(1+x) d x+\int\limits_0^1 f(2+x) d x+\ldots \ldots+\int\limits_0^1 f(99+x) d x $
$ = \int\limits_0^1 f(x) d x+\int\limits_1^2 f(x) d x+\ldots . .+\int\limits_{99}^{100} f(x) d x $
( using shifting property )
$= \int\limits_0^{100} f(x) d x=a$