Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ f(x) sin x cos x dx = (1/2(b2 - a2)) log f(x) + c, where c is the constant of integration , then f(x) =
Q. If
∫
f
(
x
)
sin
x
cos
x
d
x
=
2
(
b
2
−
a
2
)
1
lo
g
f
(
x
)
+
c
, where c is the constant of integration , then f(x) =
2901
218
WBJEE
WBJEE 2018
Report Error
A
(
b
2
−
a
2
)
s
i
n
2
x
2
33%
B
ab
s
i
n
2
x
2
0%
C
(
b
2
−
a
2
)
c
o
s
2
x
2
67%
D
ab
c
o
s
2
x
2
0%
Solution:
We have,
∫
f
(
x
)
sin
x
cos
x
d
x
=
2
(
b
2
−
a
2
)
1
lo
g
(
f
(
x
))
+
c
⇒
f
(
x
)
sin
x
cos
x
=
2
(
b
2
−
a
2
)
1
⋅
f
(
x
)
1
⋅
f
′
(
x
)
⇒
f
(
x
)
sin
2
x
=
b
2
−
a
2
1
⋅
f
(
x
)
f
′
(
x
)
⇒
sin
2
x
=
b
2
−
a
2
1
(
f
(
x
)
)
2
f
′
(
x
)
⇒
∫
sin
2
x
d
x
=
b
2
−
a
2
1
∫
(
f
(
x
)
)
2
f
′
(
x
)
d
x
⇒
2
−
c
o
s
2
x
=
b
2
−
a
2
1
⋅
(
f
(
x
)
−
1
)
⇒
2
c
o
s
2
x
(
b
2
−
a
2
)
=
f
(
x
)
1
⇒
f
(
x
)
=
(
b
2
−
a
2
)
c
o
s
2
x
2