Given, ∫f(x)sinxcosxdx=2(b2−a2)1log[f(x)]+c
On differentiating both sides, we get f(x)sinxcosx=dx−d(−2(b2−a2)log[f(x)]+c) ⇒f(x)sinxcosx=2(b2−a2)1⋅−f(x)1f′(x) ⇒2(b2−a2)sinxcosx={f(x)]2f′(x)
On integrating both sides, we get ∫(2b2sinxcosx−2a2sinxcosx)dx =∫ff(x)]2f′(x)dx ⇒−b2cos2x−a2sin2x=−f(x)1 ∴f(x)=a2sin2x+b2cos2x1